搜故事网,网罗全网精彩故事大全。找好故事就来搜故事网!

关于力学世界的科普故事大全

时间:2020-09-19 11:24:01

相关推荐

关于力学世界的科普故事大全

力学又称经典力学,是研究通常尺寸的物体在受力情况下的形变,以及速度远低于光速的运动过程的物理学分支。 力学知识最早起源于对自然现象的观察和生产劳动中的经验。运动定律的建立标志着力学开始成为一门科学。 力学不仅是一门基础科学,同时也是一门技术科学,它是许多工程技术的理论基础,又在广泛的应用过程中不断得到发展。力学是物理学、天文学以及许多工程学的基础。机械、建筑结构、航天器和船舰等的设计都必须以经典力学为基本依据。 力学可粗分为静力学、运动学和动力学三部分。静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动;动力学讨论物体运动和所受力的关系。 1.死海不死 你们知道死海吗?那是西亚一个非常有名的地方。 古时候国家与国家之间经常发生战争。战争失败后被抓住的俘虏,身体强壮的就留下做奴隶,身体差的就全部处死。 有一次战争之后,他们抓了许多的俘虏,这时一位将军就把决定处死的俘虏全部扔到死海里淹死。那些俘虏被扔进死海后,让人吃惊的事情发生了,那些人总是浮在海面上,就是不沉入海里。这位将军很生气地说,把他们都绑上大石头,然后再往海里扔。将军心想,这回他们肯定要死了,但是结果令所有的人都没有想到,那些俘虏仍然浮在海面上,没有被淹死。 那位将军认为是上帝不让俘虏死,心想如果坚持处死俘虏的话,上帝会惩罚自己,所以就决定放了他们。 事情经过很多年以后,人们才知道,那根本就不是上帝的“旨意”,因为死海里的盐分含量相当大,所以死海的密度很大,浮力也就大得惊人。人被扔进去后,总是浮在海面上,不会沉入海里,即使绑上石头也不会沉下去,所以也就不会被淹死了。 木头为什么能够浮在水面,而铁块不行呢?那是因为木头的密度比水小,铁块的密度比水的密度大的缘故。 死海其实是一个湖。死海位于亚洲的西部,湖面比海平面低422米,是世界上最低的湖泊。死海的含盐量高达23%~25%,由于湖水的含盐量高,湖水的密度已经超过了人身体的密度,所以跳进湖里的人会浮在水面上,不会游泳的人在死海里也不会被淹死。既然人都淹不死,为什么还叫它死海呢?这是因为湖水太咸,不但湖里没有鱼虾,连湖边也不长草,鸟更不会飞到这里来,整个湖区死气沉沉,没有一点生气,所以得了个死海的名字。 2.杂技团的秘密 一个小城镇里来了一个杂技团,每天都表演一些惊人的动作。小明与小寒听说之后,就立即去看。刚进去,就见一个人用硬气功表演“刀砍不伤”的节目。表演开始,气功师举起刀来,就地取材,在案板上剁断五根木筷,让被砍断的木筷飞溅一地;然后,气功师又猛然跃起,操刀砍下两根指头粗细的树枝,削萝卜、剁木头,让观众的心紧缩,相信这把刀是锋利无比的真刀。接下来,气功师玩“真”的了。把上身的衣服脱光,露出一身强壮的肌肉,这是常年锻炼的结果。表演者摆出一副强悍的姿态,使右手持刀,运气于左胸,胸大肌高高凸起绷紧。气功师挥起大刀,死命地朝左胸砍去,人们只听见“嗵嗵嗵”直响,可是气功师的胸上除了有点红印儿外,连一点伤痕也不见。等气功师表演完了,小明和小寒上前察看,更是惊讶不已。 令他们疑惑的是,大刀锋利到能砍断一捆竹筷、劈下一根树枝,为什么不会伤了皮肉? 带着这样的疑问,他们找到自己的物理老师问了个究竟。听完老师的解说之后,他们才明白,原来大刀的刀尖处是锋利的,而其他部分则是钝的。挥刀砍下,接触气功师身体的那部分是钝的,面积增大,压强减小,再加上挥刀时有技巧,看似重砍,实为轻打。 缝衣服的时候不小心,针扎破了手指,你所受到的压强与某些高压锅炉里蒸气的压强相比一点也不小;手轻轻拉动刮胡子的刀片,施加在胡子上的压强会达到每平方厘米几千牛顿。 压力和压强看上去类似,实际上相去甚远。压强是单位面积上的压力,针尖的面积是钉子尖面积的几百分之一,所以能用针缝衣服,不能用钉子来缝衣服。 压强是指单位面积上受到的压力,计算公式:P=F/S。 其中P为压强,单位为帕斯卡(Pa);F指物体受到的压力,单位为牛顿(N);S指施力与受力物体之间的接触面积,单位为平方米(m2)。 3.救命的阻力 如果说一个飞行员从几千米高的飞机上无伞跳下竟没有摔死,你会相信吗?然而,这的确是一个真实的故事。 第二次世界大战中,一架袭击德国汉堡的英国轰炸机被击中起火。坐在飞机后座的机枪手一时拿不到放在机舱前面的降落伞,但又不想活活被烧死,于是他果断地无伞跳出了机舱。他刚刚离开,飞机就爆炸了。这时飞机的高度是5500米。一分半钟以后,他飞快地落到地面。 当他从昏迷中醒来的时候,发现自己并没有摔死,只是皮肤被划破,有多处地方被挫伤。闻讯赶来的德国人也感到惊叹不已,他们对所有的数据进行了精确的测量,这都是一个奇迹。从飞机上无伞下落没有摔死的事例不只这一例,一家报刊也曾登载过幼童从四楼窗口跌下来没有摔死的。 后来,人们经过分析才发现,机枪手下落时幸运地掉在了松树丛林里,而离他不远就是开阔的平原。他先在松树丛上砸了一下,然后掉在积雪很深的雪地上,把松软的积雪砸了一个一米多深的坑。这样一来,机枪手和地面碰撞的时间被延缓了上千倍,冲力也大为减少,只有千分之几。当然也还有一个原因,他受到空气阻力的保护,如果没有空气阻力,从5500米高的地方落下,落地时的速度要达到每小时180公里左右,而空气的阻力使他的落地速度大大减少,这也是产生奇迹的原因。 这样一分析,大家就会发现,许多没摔死的奇迹都有它的道理。 一只瓷碗从桌面上掉在水泥地面上,肯定摔得粉碎;但是落在木板地上,也许可以幸免;如果落在沙土地上,就肯定摔不坏。 因为从一定高度落下的瓷碗下落到地面时动量是一定的,让它停下来所需要的冲量也是一定的。记住,冲量是力和时间的乘积。瓷碗跟不同的地面相碰的时候,冲击时间大不相同:和硬的水泥地面碰撞时间只有千分之几秒,而和沙土相碰时,时间可以延长到十分之几秒,这就是说冲击时间延长了上百倍,冲击力也就减少到只有百分之一或百分之几,这就是碗在沙土地上没有被摔坏的原因。 空气阻力Fw是空气对前进中的汽车形成的一种反向作用力,它的计算公式是:Fw=1/16`A`Cw`v2(kg)。 其中,v为行车速度,单位:m/s;A为汽车横截面面积,单位:m2:Cw为风阻系数。 空气阻力跟速度平方成正比关系,也就是说,速度增加1倍,汽车受到的阻力会增加3倍,因此高速行车对空气阻力的影响非常明显。车速高,发动机就要将相当一部分的动力,或者说燃油能量用于克服空气阻力。换句话讲,空气阻力小不仅能节约燃油,在发动机功率相同的条件下,还能达到更高的车速。空气阻力的大小除了取决于车的速度外,还跟汽车的横截面积A和风阻系数Cw有关。 4.多普勒效应 我们坐火车的时候,当一列鸣着笛的火车和你乘坐的火车相遇急驰而过时,你听到的笛声是有变化的。你特别注意过吗?其实,这种变化的界限是非常明显的。当车朝你驶来时,笛声的音调很高,汽笛离你而去时,音调立即降低。车的速度越快,音调的变化越明显。这种变化的发现应该感谢奥地利科学家多普勒。 在1842年,多普勒曾邀请音乐家在车站听火车的笛声变化。由于音乐家的耳朵训练有素,他们甚至能确定1赫兹声音频率的变化,这在当时无精确测量仪器的情况下,对科学家是非常有意义的。后来人们为了纪念他,把这种现象叫做多普勒效应。 然而,人们会带着疑问问道:为什么会产生多普勒效应呢? 音调变高,就是声音的频率加快。按说,声音的频率是由声源决定的,声源振动越快,频率越高。其实,我们听到的音调的高低主要决定于每秒进入我们耳朵的声波数。 多普勒用一个行进的队伍来代表一列声波,两个人间的距离是一个波长。当你站着不动,队伍从你的身边经过,每过去一个人,相当于一个声波进入你的耳朵里。如果你迎着队伍行走,在相同的时间里通过的人数增加;反过来你和队伍同向行进,这时通过你身边的人数变少。所以在火车迎着你开来时,相当于声波被压缩了,频率变高,背离时声波拉长了,频率变低。 当你看到这里之后,应该明白多普勒效应了,在现代社会中,多普勒效应运用十分广泛,它用来测量运动物体的速度:警察用雷达波的多普勒效应测量高速行驶的汽车是否超速行驶,成为超速行车的克星。水文学家用它测量河流的流速,在医院里则可以测量血液在血管里的流速,从而对疾病进行诊断。天文学家利用遥远星体射来的光波频率的微小变化,可以推知星体是向着地球运动还是背着地球运动,并且能知道星体运动的速度,从而验证宇宙大爆炸假说。 蝙蝠能在黑暗的夜空中捕食飞虫,是依靠超声波的回声定位原理。蝙蝠在空中飞,飞虫也在飞,从蝙蝠发声到接到回声只是一眨眼的工夫,在这么短的时间内,蝙蝠不仅知道了飞虫所在的方位,还能知道它的飞行速度和方向,所以才能准确无误地抓住飞虫。 多普勒家族在奥地利的萨尔cí堡从事石匠生意,多普勒出生后,按照家庭的传统会让他接管石匠的生意。然而他的健康状况一直不好,相当虚弱,因此他没有从事传统的家族生意。多普勒在中学学习阶段,数学方面显示出超常的水平,1825年他以各科优异的成绩毕业。在这之后他回到萨尔cí堡,后去维也纳大学学习高等数学、力学和天文学。 当多普勒在1829年在维也纳大学学习结束的时候,他被任命为高等数学和力学教授助理,他在四年期间发表了四篇数学论文。之后又当过工厂的会计员,然后到了布拉格一所技术中学任教,同时任布拉格理工学院的兼职讲师。到了1841年,他才正式成为理工学院的数学教授。 多普勒是一位严谨的老师。他曾经被学生投诉考试过于严厉而被学校调查。繁重的教务和沉重的压力使多普勒的健康每况愈下,但他的科学成就使他闻名于世。1850年,他获委任为维也纳大学物理学院的第一任院长,可是他在三年后1853年3月17日在意大利的威尼斯去世,年仅49岁。 5.人造卫星为什么会绕地球飞 北京市某小学组织同学们参观天文馆,孩子们都兴致勃勃。解说员领着同学们来到人造卫星的面前,提出了一个问题:“同学们,你们知道我们无论向上抛什么物体,总会落回地面,这是因为地球引力的作用。地球上的任何物体都逃脱不了地球引力的束缚。那么,人造卫星是怎么飞出地球,逃脱地球引力的束缚的呢?” 一时间,同学们议论纷纷,都找不到最合适的答案。正在同学们眉头紧锁时,解说员说:“其实,这可以从月球得到启发。你们知道,月球和地球之间也有万有引力,为什么月球掉不下来呢?原因在于月球不断地绕地球旋转,在月球旋转的时候,它产生了离心力,这股离心力足以抗衡地球引力对它的束缚。所以它高高地悬挂在天上而不会掉下来。 “因此,科学家们要让发射的人造卫星绕地球旋转而不掉下来,就需要使它具有能抗衡引力的离心力。经过科学家计算,离心力的大小与圆周运动速度的平方成正比。据此可以算出,要使物体不落回地面的速度是7.9千米/秒,也就是说,人造卫星如果达到7.9千米/秒的速度,它就会永远绕地球运行。科学家正是通过赋予人造卫星很快的速度,使它不从天上掉下来。” 听完这些,同学们都受益匪浅。 物体要脱离地球的束缚,飞向行星际空间,需要达到11.2千米/秒的速度才能实现。 人造卫星的运行轨道(除近地轨道外)通常有三种:地球同步轨道,太阳同步轨道,极地轨道。 ①地球同步轨道 是运行周期与地球自转周期相同的顺行轨道。其中有一种十分特殊的轨道,叫地球静止轨道。这种轨道的倾角为零,在地球赤道上空35786千米。地面上的人看来,在这条轨道上运行的卫星是静止不动的。一般通信卫星、广播卫星、气象卫星选用这种轨道比较有利。地球同步轨道有无数条,而地球静止轨道只有一条。 ②太阳同步轨道 是绕着地球自转轴,方向与地球公转方向相同,旋转角速度等于地球公转的平均角速度(360度/年)的轨道,它距地球的高度不超过6000千米。在这条轨道上运行的卫星以相同的方向经过同一纬度的当地时间是相同的。气象卫星、地球资源卫星一般采用这种轨道。 ③极地轨道 是倾角为90度的轨道,在这条轨道上运行的卫星每圈都要经过地球两极上空,可以俯视整个地球表面。气象卫星、地球资源卫星、侦察卫星、军用卫星常采用此轨道。 6.留住自行车的摩擦力 有一天,周妈妈带着儿子小强来到海边玩,小强出门时一定要带上自己心爱的自行车。 到了海边,小强骑上自己的小自行车,但在沙滩上始终骑不动。这时,妈妈走过来,微笑着对小强说:“会骑自行车的小朋友都知道,自行车在沙滩上是寸步难行的,不管你用多大力气,轮子都是转不起来。下车看一看,你就会发现,自行车轮子的下边陷进了沙子里。车轮转不动,就是这些沙子在捣乱,是沙子用摩擦力拽住了轮子。” 回到家后,妈妈又给小强做了一个有趣的实验,妈妈用一个搪瓷缸、一把筷子和一大碗米来做实验:把筷子放在搪瓷缸里,用大米把筷子压实,向上提筷子,筷子没拿出来,倒把整个缸子提起来了。这也是摩擦力在作怪。 妈妈接着说:“自行车陷进了沙滩,就像筷子插在压实的大米里一样,在车轮和沙子之间会产生很大的摩擦力,正是这个摩擦力拽住了车轮子。” 看完实验之后,小强从此不再骑自行车去海滩上玩了。 如果没有摩擦力,人们的生活又会发生什么样的变化呢? 首先,也是最基本的,我们无法行动。脚与地面没有了摩擦,人们简直寸步难行。自行车车轮与地面间光滑,怎么才能开动呢?汽车还没发动就打滑,要么就是车子开起来了就停不下来,没有阻碍它运动的力,就只能无限滑下去,最后与其他车相撞造成一起又一起的交通事故。飞机无论是活塞发动机或者涡轮喷气发动机都无法启动。 计算摩擦力的大小时,应先判断该摩擦力是滑动摩擦力还是静摩擦力。 最大的静摩擦力可以视为滑动摩擦力,计算公式为F=μN。其中μ指的是滑动摩擦系数,它只跟材料、接触面粗糙程度有关;N为正压力,单位为牛顿(N)。 7.名侦探的解密之道 《福尔摩斯探案集》是世界上一本非常具有影响力的小说,作者是柯南`道尔。 有一次,柯南`道尔在英国北部旅行的时候,一位男爵夫人找到他,希望帮助解开一个五年未解的谜。 “五年前,我的丈夫去世了。他生前爱好高尔夫球,曾嘱咐要给他造一个像高尔夫球那样的墓,我照着做了。墓地是一块很大的长方形的石面,石面上凿有一个浅浅的坑,坑里放着一个直径80厘米的大理石球。墓是朝南的,在球上朝南的一面雕刻了一个十字架。墓地四周有高高的铁栅栏,平时无人进入。”男爵夫人说。 “夫人,发生了什么事呢?”柯南`道尔问。 “自从我的丈夫去世之后,每年冬天我都去法国南部,那里的冬天比较暖和,这样我心情也会舒服些。我每年春天回来给自己丈夫扫墓时,都会发现大理石球的南面都向下转了一点,你看看,现在的十字架都有一部分被压到了下面。这个现象只发生在冬季,其他季节没有。到底是谁滚动了大理石球呢?难道说是我丈夫的灵魂要出来,想与我一起去法国南部温暖的地方过冬吗?” 于是,柯南`道尔跟随男爵夫人到墓地查看。那石面上的浅坑里存着一些水,周围长满苔藓。大理石球,他估计有几百斤重,如果有人撬动它,也不是件很容易的事,是什么目的让别人去撬动它?真是她丈夫灵魂的力量吗?作为侦探家,他更求助于科学的解释。 这时,柯南`道尔的目光又落在浅坑的积水上。忽然他找到了解谜的“钥匙”。他说:“夫人,那不是灵魂的力量,而是冰和水的原因。在这里,冬天的夜晚温度常在0℃以下,浅坑里的积水总要结冰,而冰的体积要比原来水的体积大1/10还多。到了白天,由于阳光照射,球南面的冰会融化成水,而球北面受不到阳光照射,冰仍旧不变。这时,球两边受力不再平衡,南边没有冰的支持,它就比较容易向南滚动。到了夜晚,如果再积水再结冰,结冰时膨胀的力量更容易使球向南滚动。一冬积累起来,球就转动得比较明显了。” 男爵夫人的谜被解开了。 在力学系统里,平衡是指惯性参照系内,物理受到几个力的作用,仍保持静止状态,或匀速直线运动状态,或绕轴匀速转动的状态,叫做物体处于平衡状态,简称物体的“平衡”。因稳定的不同,物体的平衡分为稳定平衡、随遇平衡、不稳定平衡三种情况。 柯南`道尔(1859—1930),英国杰出的侦探小说家、剧作家。毕业于爱丁堡医科大学,行医十余年,收入仅能维持生活。后写侦探小说。《血字的研究》几经退稿才发表,以《四签名》闻名于世。1891年弃医从文,遂成侦探小说家。代表作有《波斯米亚丑闻》《红发会》《五个橘核》等。1894年决定停止写侦探小说,在《最后一案》中让福尔摩斯在激流中死去。不料广大读者对此愤慨,提出抗议。柯南`道尔只得在《空屋》中让福尔摩斯死里逃生,又写出《巴斯克维尔的猎犬》《归来记》《恐怖谷》等侦探小说。他塑造的福尔摩斯已成为世界上家喻户晓的人物。 8.泄露秘密的bō璃 曾一度辉煌的在经历1815年滑铁卢战役失败后,被流放到大西洋南部的圣赫勒拿岛。看管的将军是英国人罗埃,对拿破仑的管理十分苛刻,只准一个仆人照料。 一天,快到中午时分,仆人还没回来做午饭,拿破仑气得直跺脚。正在这时,一个英国军官来说: “阁下,你的仆人偷了长官的十枚金币,他被逮捕了。” “混蛋!”曾经风光一世的拿破仑怒不可遏,破口大骂,“我的仆人绝不会干那种事!罗埃他连个仆人都不想给我留!”说罢就气冲冲地去找罗埃。他虽是囚犯,但仍留存着昔日统帅的威严。 “你给我讲讲仆人偷金币的过程!”拿破仑吼道。 罗埃说了事情的经过。原来,那天上午,仆人来找罗埃,要他给拿破仑请医生。当时罗埃正在清查收缴的金币,便叫秘书把仆人领到东边套间等候。罗埃告诉拿破仑:“我将金币放进抽屉里锁上,就去厕所。三分钟不到就回来了,发现钥匙忘在桌子上。收好钥匙,我叫你的仆人过来谈话。他走后,我又把抽屉里的金币清点一遍,发现少了十枚。不是你的仆人偷的,还会有谁呢?” “在我的仆人身上搜到金币没有?” “没有,想必是他藏起来了。” 拿破仑仔细看了看这个长官室,它的东西各有一个同样的套间,在通往套间的门上,门闩都在长官室这边,门上都装着相同的毛bō璃。东边的一间,他的仆人刚才呆过;西边的一间,罗埃的秘书正在办公。这两个套间又各自有门通向外边。拿破仑的手触摸到内门上的毛bō璃时,他发现东间的门上,是毛bō璃的粗糙面在长官室一边;而西间的门上,是毛bō璃的光滑面在长官室一边。于是,拿破仑果断地走进西间,以不容辩解的口气朝秘书厉声喝道:“你把偷的十枚金币交出来!” 那秘书先是一愣,然后狡辩起来。拿破仑说:“毛bō璃粗糙的一面,是凸凹不平的。当光线射上去以后,就会向四面八方反射回来。这就是漫反射。这样,很少有光线透过bō璃,所以隔着毛bō璃很难看清对面的东西。如果将水涂到粗糙面上,水就会将凸凹不平的地方填平,使漫反射大大减少,增多透过bō璃的光线,人就能隔着它看到对面的东西了。东间门上的毛bō璃粗糙面在长官室一边,我的仆人绝不可能将水涂到粗糙面上,而你在西间则可以办到,所以你可以清清楚楚地看到罗埃把金币放在哪里。就在罗埃上厕所的当儿,你从西间迅速出门,由屋外面进入长官室,拿起桌上的钥匙开了抽屉偷走金币,然后再由屋外回到西间。”这番话让罗埃的秘书哑口无言,只好交出金币。罗埃只得把拿破仑的仆人放走。 车前部两侧的反光镜通常是凸镜,它的视野比平面镜更大一些。车内中央的后视镜常是平面镜,车灯的反光罩是凹镜,它能会聚光线。在汽车上有的地方也要防止光的反射,如挡风bō璃做成斜向,从光学角度来说可有效防止外部强光的反射影响驾驶员看清前面的路。 随着工业技术的改进,bō璃生产技术也不断得到提高。应用最新全息技术开发而成的创新装饰bō璃产品镭射bō璃就是新型的装饰bō璃。它是应用镭射全息膜技术,把预制之镭射全息膜夹在两层bō璃中间,形成表面透明、但在各种不同角度上看可呈现不同的颜色、图案和视觉效果的特种bō璃。 镭射bō璃目前多用于酒吧、酒店、商场、电影院等商业性和娱乐性场所,在家庭装修中可以把它用于吧台、视听室等空间,如果追求很现代的效果也可以将其用于客厅、卧室等空间的墙面、柱面。 9.上下坡的车痕 倪宁非常喜爱骑自行车。有一天,他工作了一个通宵,到清晨才完成。他想骑自行车散散心之后再回家休息,就上街了。 突然他发现一个警察躺在路旁,腹部被刺伤,鲜血直流。他连忙停下车,用自己的围巾捂住他的伤口。警察忍着剧痛说:“十分钟之前……一个青年……突然用刀刺我……抢了我的自行车……向那边逃走了……”说完就闭上了双眼。 这时,天也亮了,恰巧有个上早班的人经过,倪宁招手向他求助,让他照料死者,自己骑车去追凶犯。走到前面,路分成左右两个岔道,而且都是上坡路。凶犯去哪条道了呢?他下车仔细察看哪条道有自行车压过的痕迹。 刚下过雨,路上有松软的黄沙,车痕清晰可见,两条路上都有。 “这两条都是上坡路,”倪宁镇静地想,“两边的车痕有什么不同之处吗?” 他发现右边路上的车痕,两个轮子所压的深浅差不多,而左边路上的车痕,两轮所压的深浅差别很明显。他忽然明白过来。这时,正好有警察赶到。倪宁告诉他们:“凶犯是从右边道上走的!” 刑警便从右边道上追去,追到了凶犯之后,便找到倪宁问了个究竟。倪宁分析说,平常骑车时,身体的重心离后轮近而离前轮远,所以人的重力分别压到两个轮子上时,分解给后轮的力大,而分解给前轮的力小。这样,后轮的压痕深,前轮的压痕浅。上坡时,身体要向前倾,重心前移,使前后轮所受的压力相差不多,两轮的压痕也就差不多一样深浅。左边道上的车痕是下坡的痕迹,绝不会是凶犯的车留下的。 什么情况下汽车在路面行驶不会留下痕迹呢?那就是失重的状态。影片中大侠们“腾云驾雾,飞檐走壁”的绝技在太空飞行中可是易如反掌,你只要轻轻一点脚,人就会腾空而起,在空中自由地飞来飞去,本领之大,超过人们的想象。以上种种的现象就是人们通常所说的失重。 判断物体是否完全失重一个最重要的标志是,物体内部各部分、各质点之间没有相互作用力,即没有拉、压、剪切等任何应力。 重力的大小跟物体的质量成正比,计算公式为:G=mg。 其中G为重力,单位为牛顿(N);m为质量,单位千克(kg);g为重力常数,等于9.8N/kg。 在静止的情况下,物体对竖直悬绳的拉力或对水平支持物的压力也等于物体受到的重力。 10.科学家断案 大科学家因主张“日心地动说”而被天主教法庭审判,他的着作也被查封,70多岁的他也被软禁在家中。 在他被软禁的日子里,有一天接到女儿的一封信,他看过之后拖着病弱的身体去了附近一个修道院——女儿就在这里当修女。 “出事的现场在哪里?”老人问。 “在钟楼第四层的阳台上。”女儿一边用手指着一边说。 伽利略预测了一下,阳台高度大约15米,阳台的下边是条大河,对岸大约在40米以外。 根据女儿在信中的描述,他们是昨天早晨发现索菲尔死在阳台上的,她的右眼被一根细细的针刺过,针丢在尸体旁。那天晚上风很大,而钟楼下面的大门是从里面闩好的,没发现有第二个人在里面。是自杀吗?不可能,索菲尔是个虔诚的教徒,她绝不会违背教规而轻生的。突然他萌生了一个假设,是凶手从河对岸将毒针射过来。 “她为什么一个人在晚上去钟楼呢?”父亲问女儿。 “听说她对您支持的‘日心地动说’(地球是围绕太阳转动的星球)的着作很佩服。她经常偷偷阅读这本书,但又不能被院长所发现,那晚她一定是上钟楼去观察星星和月亮了。” 伽利略曾经发明了一种望远镜,用它来观察,能将30米远的物体拉近到1米远,相当于把物体放大将近1000倍。他用来观察星星、月亮和太阳,做出了许多重大的天文发现。 “有人对她恨之入骨吗?”他反问道。 “好像有个同父异母的弟弟,为遗产分配的事特别恨他姐姐。出事的前一天,她弟弟送来一个小包,我不知道是什么。整理遗物时不见了。” 伽利略好像猜到了什么,说:“也许能在阳台下面的河底找到一架望远镜。” 果然不出所料,真的找到了一架望远镜。这是一架经过改装的望远镜。 “望远镜与杀人有什么关系?”女儿仍然一头雾水。父亲讲了他的推测。 伽利略在排除了索菲尔自杀的可能,排除了凶手现场杀人的可能以后,猜想凶手一定用狡猾的方法,让索菲尔在观察星空时,无意中用自己的手向自己射出毒针。他对女儿说:“索菲尔的弟弟事先在望远镜的镜筒里装上毒针。为了看清星星,索菲尔会在右眼贴近镜筒时,转动镜筒。镜筒中有螺纹,螺纹是斜面的一个应用:沿斜面移动较长的路程,镜筒才沿着‘斜面的高’向前移动较短的路程,以保证精确地调节镜片之间的距离。就在转动镜筒时,将连着毒针的压缩弹簧拉断,弹簧发生形变时储存的能量把毒针射出。索菲尔疼痛难忍,望远镜失手落水,她急忙将毒针拔出,但不敢喊救命。等毒性发作,就死去了。” 伽利略丰富的科技知识帮助他破了案。 在古代,弓箭为什么一拉就射出去了呢:那是因为人的力量让弓形成一个弧形,松开时,拉力变成了弹力,让箭射出去了。古代很多的战斗武器,如投石器等,都是利用这一原理设计的。 伽利略是伟大的意大利物理学家和天文学家,科学革命的先驱。历史上他首先在科学实验的基础上融会贯通了数学、物理学和天文学三门知识,扩大、加深并改变了人类对物质运动和宇宙的认识。为了证实和传播哥白尼的日心说,伽利略献出了毕生精力。他开创了以实验事实为根据并具有严密逻辑体系的近代科学。因此,他被称为“近代科学之父”。 11.画家脖子上的短剑 曾经两次获得奥林匹克马拉松冠军的阿贝贝,两次都打破了世界纪录,但后来的一次车祸改变了他的人生,让他终生都在轮椅上度过。他出席在英国举行的残奥会期间,曾受命去拜访一位世界着名的画家,这位画家也是坐在轮椅上的残疾人。 画家住在伦敦郊外的古城堡里,阿贝贝与使馆人员共同前往。画家的秘书出来迎接,并用电话与城堡最高层的四楼联系,那是画家的画室。 画家在电话里客气地说:“请阿贝贝先生用茶,请稍等会儿,我这就乘电梯下来。” 当电梯下到一楼,门自动打开时,他们都惊呆了:画家坐在轮椅上奄奄一息,脖子上刺着一把短剑,剑柄上拴着一根很粗的橡皮筋。他们立即把画家推出来并放置好。 “奇怪,画室里只有画家一个人啊!”秘书说,并告诉阿贝贝和使馆工作人员,除了电梯,楼里还有一个螺旋楼梯。 “我们分别上去看看。”阿贝贝建议。他坐着轮椅进入电梯,画家秘书领使馆人员由螺旋楼梯上去。他们在四楼会合,没发现有什么可疑的地方。 “我去看看电梯上下经过的竖道里有什么异常情况。”秘书悲伤地说,并托使馆人员用电话报警。 秘书打开楼梯的天花板,爬到四楼顶上去了。使馆人员在报警后也跟着上去,却找不到秘书。阿贝贝忽然想起刺在画家脖子上的那把剑,想到上面的橡皮筋,想到电梯顶棚上的通风口,便对使馆人员说: “那个秘书就是杀人犯!” 这时,警察也迅速赶到,面对阿贝贝肯定的语气,“你为什么判断那个秘书就是杀人犯呢?”使馆人员和警察同时向阿贝贝提出这个问题。 阿贝贝分析说,秘书一直觊觎(jìyú,企图得到不应得的东西)画家的成果,他想利用这次来访之机,借刀杀人,转移警察视线,就预先在楼顶拴上一根又粗又长的橡皮筋,它的下端拴上一把锐利的短剑,通过电梯上面的通风口悬挂在电梯里。画家乘电梯时,因为是坐轮椅,他的位置只能在电梯间的正中,恰好在短剑的下方。当他进入电梯时,一般不会抬头向上看,难以发现头顶上的短剑。当电梯下降时,短剑挡在电梯里,橡皮筋被拉长,短剑受到向上的拉力,压在电梯顶部。当橡皮筋的伸长远远超过它的弹性限度时,就被拉断。这时,悬空的短剑就会下落刺中画家。秘书假装不知,抽身逃走,这反倒露出马脚,终于受到应有的法律制裁。 一般情况下,凡是支持物对物体的支持力,都是支持物因发生形变而对物体产生弹力,所以支持力的方向总是垂直于支持面而指向被支持的物体。 胡克定律(弹性定律),是胡克最重要发现之一,也是力学最重要的基本定律之一。在现代,它仍然是物理学的重要基本理论。胡克定律指出:“在弹性限度内,弹簧的弹力f和弹簧的长度变化量x成正比,即f= kx。k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。”为了证实这一事实,胡克曾做了大量实验,包括各种材料所构成的各种形状的弹性体。 12.安全驾驶 天渐渐黑了,小李开着车飞驰在机场高速公路上,这次是开车去接一位教授。一路上,小李想象着这位客人是什么模样,怎样能找到他。谁知,一走神,汽车朝一堵墙开去,原来是走到了一个丁字路口。怎么办?他非常冷静地处理这种突发的情况,在行驶的方向上急刹车以争取停在墙的前面。 经验和直觉让他迅速急刹车。“吱”的一声车停在墙前,好险啊!幸亏周围没人没车,他下来检查一遍,除了因刹车使车轮磨损较大以外,其他的地方都没有损伤。他再次上车,将车倒回公路上,又上路了。他全神贯注地开到机场,顺利地接到了教授。 在回来的路上,又走到丁字路口,他倒吸一口凉气:“刚才好险啊!”教授问明情况后,解释说:“你很沉着果断。不过,急刹车磨损太大,你还有更好的办法可以采用!” “什么办法?是不是急转弯?”小李问。 教授说:“不能急转弯。如果不减速而急转弯,势必会碰到墙上。因为,按转弯半径等于刹车所用的距离来考虑,使汽车转弯所需要的力,是向前急刹车所需要的力的两倍(将来利用高中物理的公式可以很容易推出这个结论)。这力哪里来?只有依靠车轮与公路的摩擦力。既然这个摩擦力只能使汽车刚好停在墙前,那么靠同样大的摩擦力就不可能在碰墙之前转过弯来,必然撞墙。所以不刹车而急转弯是最不安全的办法。为了减少急刹车造成的磨损,可以适当刹车同时转弯。刹车时,能把车轮与地面的滚动摩擦变为滑动摩擦,摩擦力增大了,转弯半径就可以减少。在这种情况下,怎样才能做到适当刹车也不是容易掌握好的。还有,向哪个方向转弯更安全些呢?向右转弯?向左转弯?当然是向左转弯,因为我们都是靠右行驶,向左转弯的半径比较大,相对来说更安全些。总之,如果掌握得恰到好处,那么适当刹车的同时向左转弯,结果会更好些。” 在我们坐车时,为什么车向左拐时,我们的身体向右倒呢?其实这也是惯性造成的。“子弹离开枪口后还会继续向前运动”,“水平道路上运动着的汽车关闭发动机后还要向前运动”这些都是惯性。惯性与力有着极大的差别:①惯性是指物体具有保持静止状态或匀速直线运动状态的性质;而力是指物体对物体的作用。惯性是物体本身的属性,始终具有这种性质,它与外界条件无关;力则只有物体与物体发生相互作用时才有,离开了物体就无所谓力。②惯性只有大小,没有方向和作用点,而大小也没有具体数值,无单位;力是由大小、方向和作用点三要素构成,它的大小有具体的数值,单位是牛顿。③惯性是保持物体运动状态不变的性质;力作用则是改变物体的运动状态。 牛顿第一定律(即惯性定律)是:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。物体的这种保持原来的匀速直线运动或静止状态的性质就叫做惯性。 13.被抛出去的尸首 这个名字在美国家喻户晓,他是美国第16任总统,还领导了黑奴解放的革命战争。 林肯24岁时在一个乡村邮局当代理局长。那时,他每天的工作就是把信件一一送到收信人的手中。 一天早晨,他给刚来这里不久的一位神父送信,却一直叫不开门。神父自己单独住一间小屋,他心想神父也许出去散步了,于是便去田野间寻找神父。还没走多远,他就远远看见神父倒在地上,背上还插着一支箭。 林肯马上报了警,当警察来到时,一看那支箭,就知道是与这个村有仇的一个土着酋长在实施报复。 细心的林肯发现,杀人现场既没留下凶手的脚印,也没有被害人的脚印。脚印哪里去了? 警察说:“没有凶手的脚印,这不奇怪。因为凶手是从远处射的箭。可是昨晚下过雨,土是湿的,如果神父走过,一定会留下脚印的。” “莫非神父是昨晚下雨以前就被害了,雨把脚印冲掉了?”林肯猜测着。 “不,如果是那样,神父的衣裳和身体也应该是湿的。” “是风吹干了吗?” “也不是。你看神父伤口凝固的血,并没有被雨水冲洗的痕迹。” 身高1.93米的林肯环顾四周,他看到在3米远的地方有块高2米的板墙。板墙的那边是个破旧的大院,院子里有棵大树,树上还挂着一个秋千。林肯细心地观察,在板墙的附近也没有脚印。 由于警察个子不够高,他看不到院里的情况。林肯把看到的情况说给警察听。 突然,林肯说:“我知道为什么没有神父的脚印了。” 他抱起警察让他看板墙的那边,但是警察仍然大惑不解。林肯解释了一遍,警察连连点头表示信服。后来的事实,证实了林肯的推断。 到底为什么没有神父的脚印呢? 原来,神父早晨散步来到院子里,心里高兴,就荡起秋千。藏在远处的凶手,正好在神父荡到最低点,就是离地面最近时射中了他。荡秋千的过程,是重力势能与动能互相转化的过程。经过最低点时,势能最小而动能最大,所以此时人的速度最大。神父被箭射中后,失了手,在惯性的作用下,被斜向上抛出,在脱离秋千踏板后,被抛过2米高的板墙,落在板墙外3米远的地上,所以没有留下他的脚印。从理论上讲,若以与地面成45°角斜向上抛出,则抛得最远。 你们知道故事中动能讲的是什么吗?其实,动能定理是描述物体在空间运动的位移过程中,合外力对物体做的功与物体功能变化之间关系的物理规律。 重力势能是物体和地球组成的系统所共有的,而不是物体单独具有的。重力势能的大小是相对的,即它的大小与参考平面的选取有关。原则上,参考平面可任意选择,一般选择大地为参考平面;而重力势能大小的改变是绝对的,即它的大小与参考平面的选取无关。 14.身陷绝境,裹毯滚坡 公元263年,和钟会是魏国的两员大将,他们分别率领大军去征讨蜀国。当钟会率领的大军攻到剑阁时,遇到了蜀国大将的顽强抵抗,姜维把守险要的关口,居高临下,钟会难以推进,只得在剑阁外安营扎寨。这时,邓艾发现钟会想独占征讨蜀国的军功,便前去见他。 钟会劈头就问:“邓将军,我这里剑阁受阻,你有何攻蜀良策啊?” 邓艾说:“将军必须出其不意,攻其不备。你可以派兵走剑阁西面的阴平道,直取成都。这条小道全是悬崖峭壁,蜀军几乎没有设防。” 邓艾说完,钟会马上意识到邓艾想引自己误入绝境,便想顺水推舟,于是他说:“那就先请邓将军引路吧!”他预料,邓艾纵有三头六臂也难以通过这条险路,让他抢头功去吧。 听完钟会的话之后,邓艾决定率精兵而去,他一路逢山开路,行军非常艰难。有一天,邓艾率领的大军来到了摩天岭,将士们向下一看,全是陡峭的大斜坡,已经是无路可走。这时,许多人坐在山头上大哭起来。 邓艾近前一看,心中暗暗吃惊,但他镇定地对大家说:“我们至此已无退路。前面虽险,但只要通过眼前的斜坡,便可直取成都,大家同去享受荣华富贵。众将士,跟我来!” 说罢,邓艾就用毛毯把全身裹起来,沿坡滚下,刹那间便通过了险坡。众将士也不敢怠(dài)慢,先将兵器扔下去,然后各自取出所带的毛毯,裹住身体滚坡而下。几千名将士终于从绝境中闯了出来。不几天,邓艾大军直逼成都,迫使蜀后主投降。 看到这里,人们都会非常惊讶,邓艾率领的将士们怎么没有摔伤呢?其实原因是这样的,人向下滚坡时,难免与凸凹不平的坡路碰撞。由于速度很快,必须要防止撞伤,为此就要设法减少相互碰撞时的作用力,毛毯就起着这种作用。 为说清其中的道理,先看鸡蛋下落掉地的情形。当鸡蛋从相同的高度落到石头上时,每次都会碰破;而落在棉花堆上就碰不破了。两者的不同在于碰撞时间。所谓碰撞时间,就是鸡蛋从触地瞬间的下落速度到静止所用的时间。碰上坚硬的石头,鸡蛋立即静止了;碰上柔软的棉花,则是先将棉花压缩,“慢慢地”静止下来。 物理学原理告诉大家,物体的速度迅速变化时,它受到的力一定大,而缓慢变化时,它受到的力一定小。这样大家就可以明白,人在裹上毛毯滚坡时,一来,毛毯避免了人体与山坡的直接接触;二来,毛毯的柔软松厚能延长碰撞时间,以减小碰撞时的作用力。这与鸡蛋落在棉花上类似,只不过这里不是鸡蛋碰棉花,倒像是棉花碰鸡蛋了。 人走路时,脚与地面之间有何作用?这些是什么性质的力?力是存在于两物体间的相互作用,甲物体对乙物体有作用力,乙物体也必对甲物体有作用力。它们相互以对方作为自己存在的前提,不能孤立地存在。我们把其中任意的一个力叫做作用力,另一个力叫做反作用力。 根据牛顿第三定律:两个物体间的作用力和反作用力大小相等、方向相反,在一条直线上。 15.手不沾水取出硬币 在明光中学的实验课上,老师在桌子上放着一只大而浅的盘子,盘子里有一枚硬币。张老师一边向盘子里倒水一边说:“水面已经超出硬币了。条件是不许把手沾湿,而把硬币取出来,哪位能做到?” 话音刚落,学生们就纷纷议论起来,又说又做,真想出了不少办法呢! 小余的办法是:带上橡胶手套将硬币取出来。 小赵的办法是:用手拿着镊子把硬币夹出来。 小刘说,等水蒸发完了,再用手拿硬币。 小李干脆把盘子拿起来,小心地把水倒掉,等硬币上没水了,再用手拿。 小程拿一条干毛巾把盘子的水吸干,然后用手拿出硬币,并说这是利用毛细现象吸水。 小柳拿一只bō璃杯,把点燃的纸团放进去,等杯子烧热了,将它倒扣在硬币旁边的水上。只见盘子里的水被吸到杯子里去了,硬币上没水了,便可用手取出。他说这是利用大气压力将水压到杯子里去了。 小梁拿了一条橡皮管,先没在脸盆里,使管子里充满水,用手指分别堵严两边的管口,一头放入盘子的水里,一头下垂在盘子的下面,然后松开手,盘子里的水便自动顺着管子流出,直到全部流干净为止。硬币干了,再用手取出。他说这是利用虹吸现象排水,本质上也是大气压力的作用。 一下子想出这么多办法,张老师很高兴。他对大家说:“其实想实现让手不沾水取出硬币的方法很多,大家还可以继续想。各种问题都可以从不同的角度多想几种方法去解决,这就是所谓的发散思维。至于哪种办法好,这不能一概而论,要根据实际的要求和条件去判断。大家还要注意,有了许多办法,应该把它们整理一下,作一个分类归纳的工作,这样就容易抓住每种思路的实质,便于沿着正确的方向再找新的方法。你们把上面的各种方法归纳一下吧。” 这种方法可以归纳为两条思路:一是把手隔离起来再与湿的硬币接触,如戴手套、拿镊子;二是使硬币脱离水,变干,手就可以直接拿了。这后一条思路又可分为两种:一是水不动,使硬币离开水,如用木棒将硬币从水中拨出来;二是硬币仍在盘中而把水引走,如靠蒸发、毛细现象、虹吸作用等。 大气压的变化跟哪些因素有关?它是怎样变化的? 大气压的变化跟高度有关。大气压是由大气层受到重力作用而产生的,离地面越高的地方,大气层就越薄,那里的大气压就应该越小。不过,由于跟大气层受到的重力有关的空气密度随高度变化不均匀,因此大气压随高度减小也是不均匀的。 大气压不是固定不变的。为了比较大气压的大小,在1954年第十届国际计量大会上,科学家对大气压规定了一个“标准”:在纬度45°的海平面上,当温度为0℃时,760毫米高水银柱产生的压强叫做标准大气压。既然是“标准”,在根据液体压强公式计算时就要注意各物理量取值的准确性。 从有关资料上查得:0℃时水银的密度为13.595×10.3kg/m3,纬度45°的海平面上的g值为9.80672牛顿/千克。 责任编辑:中国历史网

看到此处说明本文对你还是有帮助的,关于“关于力学世界的科普故事大全”留言是大家的经验之谈相信也会对你有益,推荐继续阅读下面的相关内容,与本文相关度极高!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。
显示评论内容(2)
  1. 文字 无意2022-07-24 11:25文字 无意[内蒙古网友]106.83.49.77
    @爱你,却不敢告诉你感谢分享这么有价值的科普故事大全!
    顶3踩0
  2. 爱你,却不敢告诉你2021-08-21 23:24爱你,却不敢告诉你[香港网友]43.230.239.93
    这本书真是太棒了,对力学世界有了更深刻的了解,推荐给所有对科学感兴趣的朋友们!
    顶6踩0
相关阅读
牛顿力学:幸福在于你看待世界的方法

牛顿力学:幸福在于你看待世界的方法

关于幸福的写作中最激动人心的部分之一就是有机会与那些将分享快乐作为重中之重的人建立联系

2010-04-18

系统动力学:非线性世界的视角

系统动力学:非线性世界的视角

关于不确定性推理的小故事

2020-07-14

量子力学让我们认识到发现世界的另一面

量子力学让我们认识到发现世界的另一面

光微波之战微粒说的崛起大科学家牛顿认为光就是一连串的微粒,就像机关枪打出的子弹一样,所有的发光物体都在不停的发射无数的小微粒,然后这些小微粒进

2017-07-15

儿童科普故事大全

儿童科普故事大全

幼儿科普故事

2020-07-26